subpub

Release 1.0.0

Daniel Andersson

Jun 12, 2021

CONTENTS:

1 Example 3
2 Key features 5
3 Installation 7
4 Reference 9
Python Module Index 13

Index 15

subpub, Release 1.0.0

subpub provides a minimalistic, thread-safe, publish-subscribe API for single-process Python applications.

¢ The source code is available on GitHub.

CONTENTS: 1

https://pypi.org/project/subpub
https://pypi.org/project/subpub
https://pypi.org/project/subpub
https://subpub.readthedocs.io/en/latest
https://github.com/Penlect/subpub
https://github.com/Penlect/subpub

subpub, Release 1.0.0

2 CONTENTS:

CHAPTER
ONE

EXAMPLE

The example below demonstrates basic usage.

Create an instance of the message broker
>>> from subpub import SubPub
>>> sp = SubPub()

Subscribe to a topic (= any string or regular expression).
The returned queue 'q° is used to retrieve published data:
>>> q = sp.subscribe(r'/food/(\w+)/order-(\d+)")

Publish any data to topic:
>>> sp.publish('/food/pizza/order-66", "beef pepperoni")
True

Get the published data from the queue:
>>> match, data = q.get()

>>> data

'beef pepperoni'

The queue always receives the regexp 'match object as well.
It can be used to see how the topic matched and get groups:
>>> match.groups()

('pizza', '66")

Get the published topic:
>>> match.string
'/food/pizza/order-66"

See test cases in test_subpub.py for more examples.

subpub, Release 1.0.0

4 Chapter 1. Example

CHAPTER
TWO

KEY FEATURES

SubPub’s methods subscribe, unsubscribe, unsubscribe_all and publish are thread-safe.
Subscribers use regular experssions to filter on topic.
Subscribers receive published data through queues. (There is no built-in mechanism to register callbacks.)

When an queue is garbage collected, unsubscribe is executed automatically (because SubPub only keeps a
weak reference to the subscribers’ queues).

Publishers can post any Python object as message.

Publishers can use retain=True to store a message (as in MQTT).

subpub, Release 1.0.0

6 Chapter 2. Key features

CHAPTER
THREE

INSTALLATION

From PyPI:

$ python3 -m pip install subpub

subpub, Release 1.0.0

8 Chapter 3. Installation

CHAPTER
FOUR

REFERENCE

class subpub.SubPub (queue_factory=<class '_queue.SimpleQueue'>, *, timeout=None)
A threadsafe message broker with publish/subscribe API.

This class implements four methods:
1. subscribe - listen to topic and retrieve data throuh a queue.
2. unsubscribe - stop listening on topic.
3. unsubscribe_all - stop listening on all topics.
4. publish - post data to subscribers’ queues.

Example:

>>> sp = SubPub()
>>> q = sp.subscribe('helloworld")

>>> sp.publish('helloworld', 123)
True

>>> match, data = q.get()
>>> print(data)
123

>>> print(match.string)
helloworld

__init__ (queue_factory=<class '_queue.SimpleQueue'>, *, timeout=None)
Initialization of SubPub instance.

Example:

>>> sp = SubPub()
>>> print(sp)
SubPub (queue_factory=SimpleQueue, timeout=None)

Parameters

* queue (Callable) — Default queue factory. If used, this parameter must be a callable
which returns an instance of a queue-like object (implements get/put with timeout keyword
argument). Used whenever a client subscribes unless the client provides its own queue.
Defaults to queue.SimpleQueue.

subpub, Release 1.0.0

* timeout (float) — Default timeout used for subscribe/publish when not specified. Used
when putting data in client’s queues.

publish (topic: str, data=None, *, retain=False, timeout=None)

Publish data to topic.

This method loops through the clients subscribed regex-topics and searches for a match on topic. If there
is a match, the re.Match and data objects will be wrapped in a Msg, which then will be put in the client’s
subscription queue.

Examples:

>>> sp = SubPub()

>>> sp.publish('helloworld', data='Hi, there!")

False

>>> sp.publish('helloworld', 'Hi, new client', retain=True)
False

The boolean returned, in this case False, indicates if it existed at least one client that received the data.
Parameters
* topic (str) — Topic string the data will be published to.
e data (any Python object)— Data to be published.

e retain (bool) — If true, the published data will be remembered. Each client that sub-
scribes to a regex-topic matching this topic, will immediately receive the retained data
when they subscribe. To stop this behavior, make a publish to the same topic with data
None and retain True.

e timeout (float) — Timeout when putting published data in subscribers’ queues. The
behavior is client specific and depends what type of queue the client uses. If timeout is a
positive number, and the default queue queue.SimpleQueue is used, the publish blocks
at most timeout seconds and raises the queue.Full exception if no free slot was available
within that time. If timeout is None, block if necessary until a free slot is available. Defaults
to self.timeout.

Returns Returns True if a subscribed client queue existed and the data was successfully put in
that queue. If no receiver was found, return False.

Return type bool

subscribe (topic: str, *, queue=None, timeout=None, **args)

Subscribe to topic and receive published data in queue.
If topic is a string, it will be compiled to a regular expression using topic = re.compile(topic).

A custom receiver queue can be provided. If not, a new one will be created by self.queue_factory
with the optional **args arguments.

When data is published to a topic which matches the this topic, the queue will receive an instance of Msg
which contains the regex-match object and the data.

Subscribe to plain string:

>>> sp = SubPub()
>>> ql = sp.subscribe('helloworld")

Subscribe to regex:

10

Chapter 4. Reference

subpub, Release 1.0.0

>>> 2 = sp.subscribe(r'sensor/\d+/temperature')

Subscribe to regex with named groups:

>>> q3 = sp.subscribe(r'worker/(?P<id>\d+)/(?P<status>done|error) ")

The MqttTopic class can be used to build topics using MQTT syntax for wildcards:

>>> t = MqttTopic('sensor/+/temperature/#")
>>> t.as_regexp()
re.compile('sensor/([*/]1%)/temperature/(.*)$")
>>> g4 = sp.subscribe(t)

Parameters

* topic (str or re.Pattern) — Regular expression that match topics of interest. If a string,
the topic will be compiled to a regular expression with topic = re.compile(topic).

* queue (Queue like object.)— An instance of a queue-like object (implements get/put
with timeout keyword argument). Will be used as receiver queue for published data. If
used not, a new one will be created by self.queue_factory with the optional **args
arguments.

¢ timeout (float) - Timeout when putting retained data in subscriber’s queue. The behav-
ior is client specific and depends what type of queue the client uses. If timeout is a positive
number, and the default queue queue.SimpleQueue is used, the publish blocks at most
timeout seconds and raises the queue . Full exception if no free slot was available within
that time. If timeout is None, block if necessary until a free slot is available. Defaults to
self.timeout.

Returns Queue instance which will receive published data whenever the published topic matches
the subscribers regex-topic. The data is wrapped together with the re.Match object in an
instance of Msg.

Return type Queue-like object.
unsubscribe (topic: str) — bool
Unsubscribe to topic.
Parameters topic (str or re.Pattern)— Same as for subscribe.
Returns Returns False if the caller wasn’t actually subscribed, otherwise True.
Return type int

unsubscribe_all () — int
Unsubscribe to all clients

Returns Returns the number of topics that got unsubscribed.
Return type int

class subpub.Msg(mnatch, data)
Msg is the item sent/received in subscriber’s queues.

It carries the regular experssion re.Match object and the published data (data can be any Python object).

property data
Alias for field number 1

11

subpub, Release 1.0.0

property match
Alias for field number O

class subpub.ExceptionAwareQueue
Raise exception instances when received in queue.

This is useful if you want to publish an exception instance to a client and have it raised automatically when the
client receives it by calling .get ().

get (block=True, timeout=None)
If item retrived is an Exception instance - raise it.

get_nowait()
Same as get () but with block=False.

class subpub.MqttTopic(seq)
String which represents a topic in MQTT format.

Instead of normal Python regex, the MQTT wildcards, ‘+* and ‘#’, can be used instead.

An instance of MqttTopic can be used as topic argument to the SubPub methods. It will be converted to a regular
expression automatically:

>>> MqttTopic('room/3/sensor/+/temperature/#').as_regexp()
re.compile('room/3/sensor/([*/]*)/temperature/(.*)$"')

as_regexp (flags=0)
Replace MQTT wildcards and return regular expression.

class subpub.AsyncSubPub (queue_factory=<class 'asyncio.queues.Queue'>, *, timeout=None)
Asynchronous implementation of SubPub.

It has the same API as SubPub but is based on the asyncio paradigm.

__init__ (queue_factory=<class 'asyncio.queues.Queue'>, *, timeout=None)
Initialization of AsyncSubPub instance.

async publish(topic: str, data=None, *, retain=False, timeout=None)
Publish data to topic.

async subscribe (topic: str, *, queue=None, timeout=None, **args)
Subscribe to topic and receive published data in queue.

async unsubscribe (topic: str) — bool
Unsubscribe to topic.

async unsubscribe_all() — int
Unsubscribe to all clients

class subpub.AsyncExceptionAwareQueue (maxsize=0, *, loop=None)
Asynchronous ExceptionAwareQueue

async get()
If item retrived is an Exception instance, raise it.

get_nowait()
Same as get () but not blocking.

12 Chapter 4. Reference

PYTHON MODULE INDEX

S
subpub, 1

13

subpub, Release 1.0.0

14 Python Module Index

Symbols

__init__Q (subpub.AsyncSubPub method), 12
__init__Q (subpub.SubPub method), 9

A

as_regexp () (subpub.MgqttTopic method), 12

AsyncExceptionAwareQueue (class in subpub), 12

AsyncSubPub (class in subpub), 12

D

data (subpub.Msg property), 11

E

ExceptionAwareQueue (class in subpub), 12

G

get) (subpub.AsyncExceptionAwareQueue method), 12

get Q) (subpub.ExceptionAwareQueue method), 12

get_nowait() (subpub.AsyncExceptionAwareQueue

method), 12

get_nowait () (subpub.ExceptionAwareQueue method),

12

M

match (subpub.Msg property), 11
module

subpub, 1
MgttTopic (class in subpub), 12
Msg (class in subpub), 11

P

publish() (subpub.AsyncSubPub method), 12
publish() (subpub.SubPub method), 10

S

subpub
module, 1
SubPub (class in subpub), 9
subscribe () (subpub.AsyncSubPub method), 12
subscribe () (subpub.SubPub method), 10

INDEX

unsubscribe () (subpub.AsyncSubPub method), 12
unsubscribe () (subpub.SubPub method), 11
unsubscribe_all () (subpub.AsyncSubPub method), 12
unsubscribe_all () (subpub.SubPub method), 11

15

	Example
	Key features
	Installation
	Reference
	Python Module Index
	Index

